“Methane cracking” to unlock hydrogen + graphite from Oz wastewater

“Methane cracking” to unlock hydrogen + graphite from Oz wastewater

WastewaterSludgeAustralasia and Pacific

“Methane cracking” to unlock hydrogen + graphite from Oz wastewater

Three-year deal signed with Hazer Group

The Western Australian Government has given its support for a country-first project that will see renewable hydrogen and graphite produced from wastewater.

Utility Water Corporation and ASX-listed technology development company, Hazer Group, signed a three-year deal to produce hydrogen and graphite from the Woodman Point wastewater treatment plant in Muster.

A target has been set to produce 100 tonnes of fuel-grade hydrogen and 380 tonnes of graphite a year.

Scheduled to begin in 2021, the Hazer Group has budgeted $16.5 million for the construction of the supply facility.

The project will benefit from additional funding of $9.4 million from the Australian Renewable Energy Agency for capital expenditure and operating costs.

Methane cracking

The Hazer Group was founded in 2010 and listed on the Australian Stock Exchange in 2015.

Originally developed at the University of Western Australia (UWA), the principal technology uses a process called thermocatalytic decomposition of methane (TCD), or more simply put, methane cracking.

This involves the splitting of natural gas into hydrogen and graphite using catalysts at elevated temperature and pressure.

For the Water Corporation project, excess biogas from the wastewater treatment process that was previously burnt off will be fed into an unprocessed iron ore catalyst.

“Methane cracking” to unlock hydrogen + graphite

This allows the biogas to be broken down and converted into the hydrogen and graphite, that can be “extracted in high quantities without creating carbon dioxide in the process”.

Hazer believes its process captures the carbon as valuable graphite, rather than having it oxidised to carbon dioxide.

The company says that the problem with existing hydrogen processes is that a significant amount of carbon dioxide gets released when the hydrogen gets made.

By taking this process where the CO2 is not released, it can result in a "clean and cost-effective way of generating hydrogen and graphite”.

Kick-starting renewable hydrogen capacity

Using the wastewater biogas model, Hazer Group says its process will significantly increase emission savings – compared to that of renewable hydrogen produced through the electrolysis model.

The resulting “highly crystalline” synthetic graphite can then be used in industrial applications, said Hazer, including energy as well as for lithium-ion battery developments.

“This initiative represents an important first step towards kick-starting renewable hydrogen production capacity and driving the use of zero-emissions transport fuel for buses, heavy trucking, waste collection, and light vehicle fleets,” said regional development minister, Alannah MacTiernan.


Related content

Share your water technology stories with us
Do you have an innovation, research results or an other interesting topic you would like to share with the international water technology industry? The Aquatech website and social media channels are a great platform to showcase your stories!

Please contact our Sr Brand Marketing Manager Annelie Koomen.

Are you an Aquatech exhibitor?
Make sure you add your latest press releases to your Company Profile in the Exhibitor Portal for free exposure.

Stay up-to-date on the latest water industry news and views.

We promise never to send you spam and you can unsubscribe at any time!